- 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.
- A. Negative feedback mechanisms maintain dynamic homeostasis for a particular condition (variable) by regulating physiological processes, returning the changing condition back to its target set point.
- -Operons in gene regulation
- -Temperature regulation in animals
- -Plant responses to water limitations
- B. Positive feedback mechanisms amplify responses and processes in biological organisms. The variable initiating the response is moved farther away from the initial set-point. Amplification occurs when the stimulus is further activated which, in turn, initiates an additional response that produces system change.
- -Lactation in mammals
- -Onset of labor in childbirth
- -Ripening of fruit
- C. Alteration in the mechanisms of feedback often results in deleterious consequences.

To foster student understanding of this concept, instructors can choose an illustrative example such as:

- -Diabetes mellitus in response to decreased insulin
- -Dehydration in response to decreased antidiuretic hormone (ADH)
- -Graves' disease (hyperthyroidism)
- -Blood clotting
- 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis.
- A. Disruptions at the molecular and cellular levels affect the health of the organism.
- -Dehydration
- 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms.

- C. In fungi, protists and bacteria, internal and external signals regulate a variety of physiological responses that synchronize with environmental cycles and cues.
- -Fruiting body formation in fungi, slime molds and certain types of bacteria
- -Quorum sensing in bacteria
- 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene.
 - A. Signal transmission within and between cells mediates gene expression.
- Cytokines regulate gene expression to allow for cell replication and division.
- -Mating pheromones in yeast trigger mating gene expression.
- -Levels of cAMP regulate metabolic gene expression in bacteria.
- -Expression of the SRY gene triggers the male sexual development pathway in animals.
- -Ethylene levels cause changes in the production of different enzymes, allowing fruits to ripen.
- -Seed germination and gibberellin.
- B. Signal transmission within and between cells mediates cell function.
 - Mating pheromones in yeast trigger mating genes expression and sexual reproduction.
 - Morphogens stimulate cell differentiation and development.
 - Changes in p53 activity can result in cancer.
 - HOX genes and their role in development.
- 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. Communication involves transduction of stimulatory or inhibitory signals from other cells, organisms or the environment. [See also 1.B.1]
 - A. Communication involves transduction of stimulatory or inhibitory signals from other cells, organisms or the environment. [See also 1.B.1]
 - B. Correct and appropriate signal transduction processes are generally under strong selective pressure.
 - C. In single-celled organisms, signal transduction pathways influence how the cell responds to its environment.
 - -Use of chemical messengers by microbes to communicate with other

- nearby cells and to regulate specific pathways in response to population density (quorum sensing).
- -Use of pheromones to trigger reproduction and developmental pathways
- -Response to external signals by bacteria that influences cell movement.
- D. In multicellular organisms, signal transduction pathways coordinate the activities within individual cells that support the function of the organism as a whole.
- -Epinephrine stimulation of glycogen breakdown in mammals
- -Temperature determination of sex in some vertebrate organisms
- -DNA repair mechanisms
- 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling.
 - A. Cells communicate by cell-to-cell contact.
 - -Immune cells interact by cell-cell contact, antigen-presenting cells helper T-cells and killer T-cells. [See also 2.D.4]
 - -Plasmodesmata between plant cells that allow material to be transported from cell to cell.
 - B. Cells communicate over short distances by using local regulators that target cells in the vicinity of the emitting cell.
 - -Neurotransmitters
 - -Plant immune response
 - -Quorum sensing in bacteria
 - -Morphogens in embryonic development
 - C. Signals released by one cell type can travel long distances to target cells of another cell type.
 - 1. Endocrine signals are produced by endocrine cells that release signaling molecules, which are specific and can travel long distances through the blood to reach all parts of the body.
 - -Insulin
 - -Human growth hormone
 - -Thyroid hormones

- -Testosterone
- -Estrogen
- 3.D.3: Signal transduction pathways link signal reception with cellular response.
 - A. Signaling begins with the recognition of a chemical messenger, a ligand, by a receptor protein.
- 1. Different receptors recognize different chemical messengers, which can be peptides, small chemicals or proteins, in a specific one-to-one relationship.
- 2. A receptor protein recognizes signal molecules, causing the receptor protein's shape to change, which initiates transduction of the signal.
 - *G-protein linked receptors*
 - Ligand-gated ion channels
 - Receptor tyrosine kinases
- B. Signal transduction is the process by which a signal is converted to a cellular response.
 - 1. Signaling cascades relay signals from receptors to cell targets, often amplifying the incoming signals, with the result of appropriate responses by the cell.
 - 2. Second messengers are often essential to the function of the cascade. Ligand-gated ion channels Second messengers, such as cyclic GMP, cyclic AMP calcium ions(Ca²⁺), and inositol triphosphate (IP₃)
 - 3. Many signal transduction pathways include:
 - i. Protein modifications (an illustrative example could be how methylation changes the signaling process)
 - ii. Phosphorylation cascades in which a series of protein kinases add a phosphate group to the next protein in the cascade sequence
- 3.D.4: Changes in signal transduction pathways can alter cellular response.
 - A. Conditions where signal transduction is blocked or defective can be deleterious, preventative or prophylactic.

- Diabetes, heart disease, neurological disease, autoimmune disease, cancer, cholera.
- Effects of neurotoxins, poisons, pesticides
- Drugs (Hypertensives, Anesthetics, Antihistamines and Birth Control Drugs) 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.
 - A. The neuron is the basic structure of the nervous system that reflects function.
 - 1. A typical neuron has a cell body, axon and dendrites. Many axons have a myelin sheath that acts as an electrical insulator.
 - 2. The structure of the neuron allows for the detection, generation, transmission and integration of signal information.
 - 3. Schwann cells, which form the myelin sheath, are separated by gaps of unsheathed axon over which the impulse travels as the signal propagates along the neuron.
 - B. Action potentials propagate impulses along neurons.
 - 1. Membranes of neurons are polarized by the establishment of electrical potentials across the membranes.
 - 2. In response to a stimulus, Na^+ and K^+ gated channels sequentially open and cause the membrane to become locally depolarized.
 - 3. Na^+/K^+ pumps, powered by ATP, work to maintain membrane potential.
 - C. Transmission of information between neurons occurs across synapses.
 - 1. In most animals, transmission across synapses involves chemical messengers called neurotransmitters.
 - Acetylcholine
 - Epinephrine
 - Norepinephrine
 - Dopamine

- Serotonin
- GABA
- 2. Transmission of information along neurons and synapses results in a response.
- 3. The response can be stimulatory or inhibitory.
- D. Different regions of the vertebrate brain have different functions.
- Vision
- Hearing
- Muscle movement
- Abstract thought and emotions
- Neuro-hormone productio
- Forebrain (cerebrum), midbrain (brainstem) and hindbrain (cerebellum)
- Right and left cerebral hemispheres in humans
- 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts.
- B. Interactions and coordination between systems provide essential biological activities.
 - Nervous and muscular